
YEAH A1
Welcome to C++!

Trip Master
Zheng Lian

Welcome to YEAH

● Your Early Assignment Help was conceived many moons ago to help students start early on

assignments

● We’ll go over each part of the assignment, and I’ll give helpful tips / hints, as well as conceptual

overviews for trickier topics
○ Zheng and I will do our best to answer your questions :)

● These slides are NOT a supplement to reading the assignment handouts!
○ Keith’s explanations are far more comprehensive and insightful!

● If possible, please come to the live YEAH sessions. Zheng and I get lonely :(

About us

Trip Master

- Senior studying CS

Systems (hoping to study
Systems as a coterm soon)

- A Cappella nerd and
teaching fanatic

Zheng Lian (right)

- Coterm studying AI

(studied CS Theory as an
undergrad)

- Loves to sing and
photograph with farm
animals

Assignment 1 Logistics

● The assignment is due on Friday 1/22 at the start of class
● This assignment must be completed individually (but hopefully you know that!)

Assignment Overview

● Stack Overflow
○ When recursion can go terribly wrong!

Assignment Overview

● Stack Overflow
○ When recursion can go terribly wrong!

● Only Connect
○ Recursive text modification!

Assignment Overview

● Stack Overflow
○ When recursion can go terribly wrong!

● Only Connect
○ Recursive text modification!

● Playing Fair
○ Fairness to a higher order

Assignment Overview

● Stack Overflow
○ When recursion can go terribly wrong!

● Only Connect
○ Recursive text modification!

● Playing Fair
○ Fairness to a higher order

● Sandpiles
○ Recursion is beautiful!

Assignment Overview

● Stack Overflow
○ When recursion can go terribly wrong!

● Only Connect
○ Recursive text modification!

● Playing Fair
○ Fairness to a higher order

● Sandpiles
○ Recursion is beautiful!

● Plotter
○ Iteration can be beautiful, too :)

Before We Begin

● Please let us know if there is any technical

difficulty

● And please ask clarifying questions! They are

extremely helpful to both you and your peers

Part 1:

● Every time you call a function, a portion of your computer’s memory (DRAM) is allocated called a

stack frame.

Part 1:

● Every time you call a function, a portion of your computer’s memory (DRAM) is allocated called a

stack frame.

● In a recursive function, every time we recurse, the computer needs to generate a new stack frame!

As you can see, each time
digitalRootOf() calls
itself, a new frame is
created!

What happens if we don’t include a proper
terminating (base) case in our code?

Is there a limit to how
many stack frames we
can create?

Part 1:

● A program that has infinite recursion will run into something called Stack Overflow
○ Stack Overflow happens when your computer runs out of RAM to allocate to your programs!
○ Attempting to create infinite stack frames will do this!

Part 1:

● A program that has infinite recursion will run into something called Stack Overflow
○ Stack Overflow happens when your computer runs out of memory (RAM) to allocate to your programs!
○ Attempting to create infinite stack frames will do this!

Stack Overflow problems
happen all the time in the
real world!

Part 1:

● In this first part, your task is to examine the file Stackoverflow.cpp and step through it in the

debugger
● All you have to do is run the Stack Overflow program in the debugger.

○ Question for the reader: what’s the difference between running this program in normal mode vs debug
mode? (Try it!)

Part 1:

● Once your program has crashed due to Stack Overflow, you’ll need to examine the call stack, the

sequence of function calls that the program executed.

Part 1:

● Once your program has crashed due to Stack Overflow, you’ll need to examine the call stack, the

sequence of function calls that the program executed.

● You should notice a variable index appear in your debug window on the right side of your screen.

(I’ve hidden its value)

Part 1:

● Once your program has crashed due to Stack Overflow, you’ll need to examine the call stack, the

sequence of function calls that the program executed.

● You should notice a variable index appear in your debug window on the right side of your screen.

(I’ve hidden its value)

● As you click on other instances in the call stack, you’ll notice that the value of index will change!

Part 1:

● Once your program has crashed due to Stack Overflow, you’ll need to examine the call stack, the

sequence of function calls that the program executed.

● You should notice a variable index appear in your debug window on the right side of your screen.

(I’ve hidden its value)

● As you click on other instances in the call stack, you’ll notice that the value of index will change!

● Your task is to identify the cycle in the values of index, which is causing the infinite recursion!
○ Report these numbers in the comments of the Stackoverflow.cpp file

Questions about ?

Before we continue, let’s talk about...

Kanye StudentTest’s Testing Overview!

Student-Test, CS106B
alum and unit-testing pro

cause stack
overflow

Running Tests in CS106B
● An important part of CS106B is testing, the ability to write small pieces of functionality that you can

test.

● There are 4 functions you’ll be frequently using this quarter, TIME_OPERATION, EXPECT,
EXPECT_EQUAL, and EXPECT_ERROR.

○ You will create STUDENT_TESTs and use TIME_OPERATION, EXPECT, EXPECT_EQUAL, and
EXPET_ERROR to verify the correctness of your functions!

● TIME_OPERATION (inputsize, operation) function call times how long it takes to perform function
OPERATION on INPUTSIZE elements, and reports these numbers to the console.

● Check out the use of the EXPECT functions use on the next slide!

Running Tests in CS106B

Questions about testing?

Let’s start coding!

Part 2: Only Connect

● In this part of the assignment, you’ll be asked to implement the following recursive function:

which, given a string of text, removes all characters except the consonants, and converts the

remainder to uppercase.

Part 2: Only Connect

● In this part of the assignment, you’ll be asked to implement the following recursive function:

which, given a string of text, removes all characters except the consonants, and converts the

remainder to uppercase.

Part 2: Only Connect

● A few hints about this problem:
○ Notice that the return type of this function is string . What might this tell you about the base case for this

function?

Part 2: Only Connect

● A few hints about this problem:
○ Notice that the return type of this function is string . What might this tell you about the base case for this

function?
○ Think about this problem as going character by character.

Part 2: Only Connect

● A few hints about this problem:
○ Notice that the return type of this function is string . What might this tell you about the base case for this

function?
○ Think about this problem as going character by character.

yeet What should you return if the first
character is a vowel / non letter?
Do we even care about remembering this
character?

Part 2: Only Connect

● A few hints about this problem:
○ Notice that the return type of this function is string . What might this tell you about the base case for this

function?
○ Think about this problem as going character by character.
○ There is no built in isvowel function in the cpp libraries -- you’ll have to write your own.

Part 2: Only Connect

● A few hints about this problem:
○ Notice that the return type of this function is string . What might this tell you about the base case for this

function?
○ Think about this problem as going character by character.
○ There is no built in isvowel function in the cpp libraries -- you’ll have to write your own.
○ Take a look at the Stanford library “strlib.h” for some ~helpful~ string functions.

■ From personal experience, the people who do the best in this class make use of all that the Stanford
libraries have to offer!

Part 2: Only Connect

● A few hints about this problem:
○ Notice that the return type of this function is string . What might this tell you about the base case for this

function?
○ Think about this problem as going character by character.
○ There is no built in isvowel function in the cpp libraries -- you’ll have to write your own.
○ Take a look at the Stanford library “strlib.h” for some ~helpful~ string functions.

■ From personal experience, the people who do the best in this class make use of all that the Stanford
libraries have to offer!

○ Here are a few helpful char functions to help you get started!

Returns a nonzero value (equivalent to true) if
the provided character is in the alphabet

Returns the uppercase version of the
provided character (or the same character if
invalid)

Part 2: Only Connect

● A few hints about this problem:
○ Notice that the return type of this function is string . What might this tell you about the base case for this

function?
○ Think about this problem as going character by character.
○ There is no built in isvowel function in the cpp libraries -- you’ll have to write your own.
○ Take a look at the Stanford library “strlib.h” for some ~helpful~ string functions.

■ From personal experience, the people who do the best in this class make use of all that the Stanford
libraries have to offer!

○ Here are a few helpful char functions to help you get started!

Returns a nonzero value (equivalent to true) if
the provided character is in the alphabet

Returns the uppercase version of the
provided character (or the same character if
invalid)

But wait… why do these functions
take in ints and not chars?

It’s time for...

Charole Baskin’s brief foray into char
representation via the ASCII set!

INTS DOUBLES -Charole Baskin, 106B
alum and mariticide
suspect

How do we represent characters?

● Let’s face it, there are a lot of unique chars out there. When you couple that with the existence of
fonts, you get a data representation nightmare – how do you represent chars?

How do we represent characters?

● Let’s face it, there are a lot of unique chars out there. When you couple that with the existence of
fonts, you get a data representation nightmare – how do you represent chars?

● The computing world decided to get together to create a standard number representation for
popular chars (128 of them!). Each char would correspond to an integer in a table called the ASCII
set.

How do we represent characters?

● Let’s face it, there are a lot of unique chars out there. When you couple that with the existence of
fonts, you get a data representation nightmare – how do you represent chars?

● The computing world decided to get together to create a standard number representation for
popular chars (128 of them!). Each char would correspond to an integer in a table called the ASCII
set.

● For example, ‘A’ -> 65, and ‘a’ -> 97.

What does this code print?

How do we represent characters?

● You need to be careful that you’re not working directly with integers when you work with characters!

○ If a function returns an int, be sure you’re storing the data as a character so that it can be read properly!

Back to the program...

Part 2: Only Connect

● Some final thoughts:
○ This function must be implemented recursively. No loops please!

Part 2: Only Connect

● Some final thoughts:
○ This function must be implemented recursively. No loops please!
○ Feel free to add helper functions like isVowel! We love decomposition :)

Part 2: Only Connect

● Some final thoughts:
○ This function must be implemented recursively. No loops please!
○ Feel free to add helper functions like isVowel! We love decomposition :)
○ Remember that we’re treating ‘y’ like a vowel :)

Part 2: Only Connect

● Some final thoughts:
○ This function must be implemented recursively. No loops please!
○ Feel free to add helper functions like isVowel! We love decomposition :)
○ Remember that we’re treating ‘y’ like a vowel :)
○ Be sure to add robust tests to your program to verify its correctness on tricky cases!

Questions about Only Connect?

Confusion is nothing to
be ashamed of -- just ask
The Boulder!

Part 3: Playing Fair

● Next up, you’ll be writing two recursive functions that, given some integer n, produce either an A
sequence or a B sequence of order n.

Part 3: Playing Fair

● Next up, you’ll be writing two recursive functions that, given some integer n, produce either an A
sequence or a B sequence of order n.

● Here’s what these sequences look like in various orders!

Part 3: Playing Fair

● Next up, you’ll be writing two recursive functions that, given some integer n, produce either an A
sequence or a B sequence of order n.

● Here’s what these sequences look like in various orders!

cout << aSequenceOfOrder(0) << endl; // “A”
cout << bSequenceOfOrder(3) << endl; // “BAABABBA”

Part 3: Playing Fair

● To get insight into solving this problem, it will help to think about building a solution from the
ground up.

Part 3: Playing Fair

● To get insight into solving this problem, it will help to think about building a solution from the
ground up.

○ For example, an order-1 A sequence is simply an order-0 A sequence concatenated with an order-0 B
sequence!

○ Does this pattern continue for an order-n sequence?

Part 3: Playing Fair

● It totally does! This order-4 A
sequence consists of
an order-3 A
sequence and an
order-3 B Sequence!

Part 3: Playing Fair

● It totally does!

This order-3 B
sequence consists of
an order-2 B
sequence and an
order-2 A Sequence!

Part 3: Playing Fair

● Some more notes about this problem:
○ Beware of large inputs to this function -- as you can see, the length of a sequence is 2^n of the order, so

summon large sequences at your own risk.

Part 3: Playing Fair

● Some more notes about this problem:
○ Beware of large inputs to this function -- as you can see, the length of a sequence is 2^n of the order, so

summon large sequences at your own risk.
○ This function must be implemented recursively. None of that old-school loopy business.

■ Keep in mind that you are allowed to call the BSequence() function from the ASequence() function!

Part 3: Playing Fair

● Some more notes about this problem:
○ Beware of large inputs to this function -- as you can see, the length of a sequence is 2^n of the order, so

summon large sequences at your own risk.
○ This function must be implemented recursively. None of that old-school loopy business.

■ Keep in mind that you are allowed to call the BSequence() function from the ASequence() function!
○ Recall that this function takes an integer input n. If the user inputs a negative number, you should raise an

error via the following syntax!

Questions about Playing Fair?

Part 4: Sandpiles

● In this penultimate part, you’ll be writing code to simulate a sandbox like so:

Part 4: Sandpiles

● In this penultimate part, you’ll be writing code to simulate a sandbox like so:

● Each tile represents an entry in a called world.

Part 4: Sandpiles

● In this penultimate part, you’ll be writing code to simulate a sandbox like so:

● Each tile represents an entry in a called world.

● More specifically, you’ll need to simulate the dropping of a grain of sand into this world via the

recursive function:

which attempts to drop a grain of sand into world at location {row, col}

Part 4: Sandpiles

Here’s how dropping sand works:

The sandbox will
start looking empty!

Part 4: Sandpiles

Here’s how dropping sand works:

The sandbox will
start looking empty!

dropSandOn(world,
2,2);

Part 4: Sandpiles

Here’s how dropping sand works:

Now we have a
single element at
location{2,2}

dropSandOn(world,
2,2);

Part 4: Sandpiles

Here’s how dropping sand works:

dropSandOn(world,
2,2);
dropSandOn(world,
2,2);

Part 4: Sandpiles

Here’s how dropping sand works:

dropSandOn(world,
2,2);
dropSandOn(world,
2,2);

The number
increases for every
grain added!

Part 4: Sandpiles

Here’s how dropping sand works:

dropSandOn(world,
2,2);
dropSandOn(world,
2,2);
dropSandOn(world,
2,2);

The number
increases for every
grain added!

Part 4: Sandpiles

Here’s how dropping sand works:

dropSandOn(world,
2,2);
dropSandOn(world,
2,2);
dropSandOn(world,
2,2);

The number
increases for every
grain added!

Part 4: Sandpiles

Here’s how dropping sand works:

dropSandOn(world, 2,2);
dropSandOn(world, 2,2);
dropSandOn(world, 2,2);
dropSandOn(world, 2,2);

But something
different happens
any time a cell hits
the number “4”...

Part 4: Sandpiles

Here’s how dropping sand works:

dropSandOn(world, 2,2);
dropSandOn(world, 2,2);
dropSandOn(world, 2,2);
dropSandOn(world, 2,2);

Boom!

Part 4: Sandpiles

● Here’s what happened:
○ When a fourth piece of sand was placed on a square where 3 existed previously, the pile “toppled,” meaning

the following:
■ It set the value in its current square to 0

Part 4: Sandpiles

● Here’s what happened:
○ When a fourth piece of sand was placed on a square where 3 existed previously, the pile “toppled,” meaning

the following:
■ It set the value in its current square to 0
■ It increased the value in squares in each of the cardinal directions by 1, effectively repeating the

“dropping” process in those 4 locations!
● Yes, this means that dropping sand in one location could cause a chain reaction if neighboring

(cardinal) cells already have 3 piles of sand in them!

Part 4: Sandpiles

● A few more details about this problem:
○ This function must be done recursively. The sandpile routine should look quite self-similar when you need to

topple piles of 4!

Part 4: Sandpiles

● A few more details about this problem:
○ This function must be done recursively. The sandpile routine should look quite self-similar when you need to

topple piles of 4!
○ Beware of the bounds of the grid. Any pile that topples on the boundary of a grid should not attempt to

modify out of bounds locations.
■ You can determine whether a coordinate set is in bounds with the

grid.inBounds(row,col) function.

Part 4: Sandpiles

● A few more details about this problem:
○ This function must be done recursively. The sandpile routine should look quite self-similar when you need to

topple piles of 4!
○ Beware of the bounds of the grid. Any pile that topples on the boundary of a grid should not attempt to

modify out of bounds locations.
■ You can determine whether a coordinate set is in bounds with the

grid.inBounds(row,col) function.
○ In case you need a refresher, here’s how you might access / set the {0,0} element of some existing grid world!

world[0][0] = 137;

cout << world[0][0] << endl; // 137

Questions about Sandpiles?

sandpiles
-Anakin Try(-catch)walker, 106B cynic
and disgraced Jedi (in that order)

Part 5: Plotter

● It’s time for the final part of the assignment, and guess what?

Part 5: Plotter

● It’s time for the final part of the assignment, and guess what? You don’t need to use recursion here.
We’re serious.

Part 5: Plotter

● It’s time for the final part of the assignment, and guess what? You don’t need to use recursion here.
We’re serious.

This serious!

Part 5: Plotter

● You will, however, need to implement a plotter.

Part 5: Plotter

● You will, however, need to implement a plotter.
○ A plotter is a coordinate-based drawing system that turns a series of commands into a drawing on a simply

canvas!

Part 5: Plotter

● You will, however, need to implement a plotter.
○ A plotter is a coordinate-based drawing system that turns a series of commands into a drawing on a simply

canvas!
○ Here’s an example:

Notice that the pen starts at (0,0),
so MoveAbs(-0.8,0.8) would
move the pen to the upper-left

Part 5: Plotter

● Here are a few logistics about the plotter:
○ The pen initially begins at (0,0), which in the center of the canvas. It begins not on the canvas, with width=1

and color=black

Part 5: Plotter

● Here are a few logistics about the plotter:
○ The pen initially begins at (0,0), which in the center of the canvas. It begins not on the canvas, with width=1

and color=black
○ We’ve provided you the following function:

Part 5: Plotter

● Here are a few logistics about the plotter:
○ The pen initially begins at (0,0), which in the center of the canvas. It begins not on the canvas, with width=1

and color=black
○ We’ve provided you the following function:

I draw a line from (x0,y0) to (x1, y1),
with a pen width and color
determined by the PenStyle struct!

Part 5: Plotter

● Here are a few logistics about the plotter:
○ The pen initially begins at (0,0), which in the center of the canvas. It begins not on the canvas, with width=1

and color=black
○ We’ve provided you the following function:

I draw a line from (x0,y0) to (x1, y1),
with a pen width and color
determined by the PenStyle struct!

A struct is a
custom-defined
container. PenStyle is
defined in
“plotter.h”

Part 5: Plotter

● Here are a few logistics about the plotter:
○ The pen initially begins at (0,0), which in the center of the canvas. It begins not on the canvas, with width=1

and color=black
○ We’ve provided you the following function:

I draw a line from (x0,y0) to (x1, y1),
with a pen width and color
determined by the PenStyle struct!

A struct is a
custom-defined
container. PenStyle is
defined in
“plotter.h”

Here’s how to declare and store
properties inside a struct. Remember
that width and color were defined by
the programmer in the struct
signature on the right!

Part 5: Plotter

● Here are a few logistics about the plotter:
○ The pen initially begins at (0,0), which in the center of the canvas. It begins not on the canvas, with width=1

and color=black
○ You will need to implement the following function:

I contain a series of commands
(stored as strings) that you will
read in line by line! These
commands are instructions for
your plotter!

Part 5: Plotter

● Here are a few logistics about the plotter:
○ The pen initially begins at (0,0), which in the center of the canvas. It begins not on the canvas, with width=1

and color=black
○ You will need to implement the following function:

I contain a series of commands
(stored as strings) that you will
read in line by line! These
commands are instructions for
your plotter!

Here’s how you might read
individual lines from the script
stream!

Part 5: Plotter

● Here are the kinds of commands (lines) that you’ll encounter!

Part 5: Plotter

● Here are the kinds of commands (lines) that you’ll encounter!

Some things I want you to consider:
● There’s currently no provided way

to determine whether the pen is up
or down. You’ll need to figure out
how to keep track of that!

Part 5: Plotter

● Here are the kinds of commands (lines) that you’ll encounter!

Some things I want you to consider:
● There’s currently no provided way

to determine whether the pen is up
or down. You’ll need to figure out
how to keep track of that!

● The above is true about your pen’s
current coordinates as well!
Sounds like you’ll have some extra
bookkeeping to do…

Part 5: Plotter

● Here are the kinds of commands (lines) that you’ll encounter!

Some things I want you to consider:
● There’s currently no provided way

to determine whether the pen is up
or down. You’ll need to figure out
how to keep track of that!

● The above is true about your pen’s
current coordinates as well!
Sounds like you’ll have some extra
bookkeeping to do…

● The commands are case
insensitive. You should be able to
interpret the command: “penColOr
BLue”

Part 5: Plotter

● Here are the kinds of commands (lines) that you’ll encounter!

Some things I want you to consider:
● There’s currently no provided way

to determine whether the pen is up
or down. You’ll need to figure out
how to keep track of that!

● The above is true about your pen’s
current coordinates as well!
Sounds like you’ll have some extra
bookkeeping to do…

● The commands are case
insensitive. You should be able to
interpret the command: “penColOr
BLue”

I’m gonna post on this slide for
a second for questions!

Part 5: Plotter

● Here’s another example list of commands:

Part 5: Plotter

● Here’s another example list of commands:

● Notice that many of the commands include numbers as
arguments.

Part 5: Plotter

● Here’s another example list of commands:

● Notice that many of the commands include numbers as
arguments.

● These arguments will always be delimited (separated) by
spaces in a line, so if you want to turn a single command
into a vector of tokens (items separated by delimiters), use
the following function: (in “strlib.h")

Part 5: Plotter

● Here’s another example list of commands:

● Notice that many of the commands include numbers as
arguments.

● These arguments will always be delimited (separated) by
spaces in a line, so if you want to turn a single command
into a vector of tokens (items separated by delimiters), use
the following function: (in “strlib.h")

● You can turn string representations of numbers into
floating point numbers via stringToReal(string s)

Part 5: Plotter

● Some final thoughts:
○ You can assume that the stream provided to you is properly formatted -- even though the case might be

strange, data will always be formatted correctly like it was in the examples :)

Part 5: Plotter

● Some final thoughts:
○ You can assume that the stream provided to you is properly formatted -- even though the case might be

strange, data will always be formatted correctly like it was in the examples :)
○ You don’t need to worry about out of bounds errors, just follow whatever coordinates we give you :). Oh

happy day!

Part 5: Plotter

● Some final thoughts:
○ You can assume that the stream provided to you is properly formatted -- even though the case might be

strange, data will always be formatted correctly like it was in the examples :)
○ You don’t need to worry about out of bounds errors, just follow whatever coordinates we give you :). Oh

happy day!
○ Remember to initialize the plotter (set the initial position to (0,0), and set the color=black and width=1)

before you begin reading from the stream!

Part 5: Plotter

● Some final thoughts:
○ You can assume that the stream provided to you is properly formatted -- even though the case might be

strange, data will always be formatted correctly like it was in the examples :)
○ You don’t need to worry about out of bounds errors, just follow whatever coordinates we give you :). Oh

happy day!
○ Remember to initialize the plotter (set the initial position to (0,0), and set the color=black and width=1)

before you begin reading from the stream!
○ Whenever dealing with strings, take another looksie through “strlib.h ”! You might surprise yourself with

the helpful functions!

Part 5: Plotter

● Some final thoughts:
○ You can assume that the stream provided to you is properly formatted -- even though the case might be

strange, data will always be formatted correctly like it was in the examples :)
○ You don’t need to worry about out of bounds errors, just follow whatever coordinates we give you :). Oh

happy day!
○ Remember to initialize the plotter (set the initial position to (0,0), and set the color=black and width=1)

before you begin reading from the stream!
○ Whenever dealing with strings, take another looksie through “strlib.h ”! You might surprise yourself with

the helpful functions!
○ You’ll be testing your plotter by running pre-packaged plotter scripts, and then you will manually inspect

them for correctness. Don’t worry -- if your implementation is incorrect you should be able to tell by
inspection :)

Questions about Plotter?

An old Hewlett-Packard Plotter
machine. Kinda… ugly, no?

Congrats! You’re ready to tackle A1!

Good luck! If you get stuck,
remember that you have your
wonderful Section Leaders
and LAIR hours for help!

*r
ecurs

iv
e-b

iso
n n

oise
s*

